




comminution of the fractured bone was seen with closer bullet
tracts (Figure 5).

The 7.62×39 and 9×19 mm failed to develop significant
temporary cavities (maximum diameters of 10 and 5 cm,
respectively) and failed to produce bone fracture. However,
pressure recordings revealed the highest pressures (Figure 6) and
pressure rise rates occurred for tracts closest to the sensor
(1 cm) and reduced the further away the bullet passed, with the
highest values seen for the 5.56×45 and 7.62×39 mm.

Strain gauge results were variable with no clear trend. Prior
to commencing this study, the authors expected the bones to
flex directly laterally as the bullet passed the medial cortex. This
was not the case and therefore the gauges did not account for
the direction of flexure, which varied with variable bullet cali-
bres and distances from the bone. This precluded accurate
results from this technique even when vector analysis of the
lateral force was analysed. However, the synchronisation of the
gauges to the video revealed that fracture, corresponding to a
high strain peak, occurred on the expansion of the temporary
cavity. If no fracture occurred, a sinusoidal pattern of strain was
seen.

The energy transfer or loss of energy during transit of the
gelatin, as determined by change in kinetic energy of the project-
ile, showed a clear difference between those bullets that caused
fracture (1600–1800 J) and those that did not (400–500 J).

DISCUSSION
Indirect fractures are seen when a bullet traverses close to, but
does not contact, the bone.32 However, a complete understand-
ing of how this fracture occurs is still developing.

This study convincingly shows, with slow motion video, that
it is the expansion of the temporary cavity, rather than the
shock wave, the collapsing of the temporary cavity or its oscilla-
tion that fractures the bone. It is also confirmed by fracture pat-
terns, being, at least in our experimental setup, consistently
wedge-shaped with the apex of the wedge seen at the sight of
highest tension on the ‘far’ cortex and the base closest to the
expanding cavity. The position of the ‘far’ cortex depends on
where the maximum temporary cavity expansion occurs within
the ballistic gelatin and this is determined by the projectile
design. For example, like previous authors, we found that the
0.4400 hollow point bullet mushrooms on impact increasing its
diameter 2–3 times, developing its expanding temporary cavity
from the gel surface.38 We noted that this results in the cavity
impacting the bone from an antero-medial direction flexing the
bone on its postero-lateral surface, resulting in a transverse frac-
ture of the postero-lateral surface with a wedge-shaped fracture
extending onto the antero-medial surface. In contrast, the
5.56×45 mm, which we, like others, noted to enter the gel with
little initial deformation, started to yaw around the 10 cm
depth, resulting in an expanding cavity with its epicentre being
at a depth of 14 cm.10 We found that this cavity expanded as an
enlarging sphere, impacting the bone on its postero-medial
surface flexing it in an antero-lateral direction. In this situation,
a transverse fracture on the antero-lateral surface and a wedge
extending towards the postero-medial surface was seen.

The transverse fracture, which we found at the apex of the
wedge, is suggested by other papers to occur when the bone fails
in tension, whereas the wedge occurs from compression.39 40

This pattern is consistent with the bone fracturing from forced
flexion caused by the expansion of the temporary cavity, rather
than the shock wave, which would only fracture in one direction,
as the pressure wave expands from the impact site, or the collaps-
ing of the temporary cavity, which would have the same fracture
pattern, but in the opposite direction. These results concur with
the video and strain gauge findings, which show fracture occur-
ring during the expansion of the temporary cavity.

Similar results were found by Dougherty et al32 who, like
others, described simple fracture patterns, but did not analyse
these in detail, but did analyse the temporal relationship
between a 5.56×45 mm bullet passage and fracture using

Figure 1 Time sequence of
5.56×45 mm bullet (impact velocity of
970 m/s) shot 1 cm adjacent to the
bone. Note the entry is from the right
of each photograph and the exit on
the left.

Figure 2 Amount of bone flexion with varying calibres and bullet
distances from bone. The black line at 3 mm represents the minimum
flexion required to cause fracture. Note: The 7.62×39 and 9×19 mm
failed to cause any bone flexion.
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synchronised strain gauges and video in cadaveric bone. They
concluded that the temporary cavity and not the sonic shock
wave was responsible for the fracture.32

While we found no evidence that the collapsing and oscilla-
tion of the temporary cavity caused fracture, we did see it draw
fracture fragments back towards their origin and in doing so
may have further damaged the bone and surrounding soft
tissues, or drawn foreign material into the wound, as suggested
by previous publications.21–25

In this study, we found no correlation between the maximal
pressures generated and fracture formation. Instead, we found
the size and the proximity of the temporary cavity to the bone,
as well as the energy transfer to the block41 and the amount of
flexion of the bone determined the likelihood of fracture. In our
study, the 5.56×45 mm and 0.4400 produced large temporary
cavities (diameter 14 and 16 cm, respectively) in comparison
with the 7.62×39 and 9×19 mm (diameter 10 and 5 cm,
respectively). This corresponded to an energy transfer to the gel

block of approximately 400 J for the 7.62×39 and 9×19 mm,
but four times this for the 5.56×45 mm and 0.4400. However,
despite such large cavities and energy transfer, fracture only
occurred with bullets close to the bone, with a maximum dis-
tance of 1 cm for the 5.56×45 mm, consistent with Dougherty
et al32 and 3 cm for the 0.4400. Under these circumstances, the
expansion of the temporary cavity and radial displacement of
the surrounding gel was seen to flex the bone rather than dis-
place it as a unit without flexion. Once flexion surpassed 3 mm
the bone was seen to fracture.

We left the bones free within the gelatin and not fixed, or
loaded, at their ends, thus simulating a non-weight bearing limb.
This allowed the bones to move, rather than just flex. For the
5.56×45 mm at 1 cm, the bone flexed and fractured without
the bone moving significantly; however, beyond 1 cm the bone
moved as a unit and flexion was insignificant. This may be
related to the lower force being applied to the bone with more
distant gunshot wounds, or the lower rate of force transfer. It

Figure 3 Indirect fracture from a
5.56×45 mm bullet passing 1 cm off
the medial aspect of the mid-femur,
showing tension failure on the
antero-lateral cortex and a spat-out
compression wedge on the
postero-medial cortex.

Figure 4 Time sequence of 0.4400
shot 1 cm away from the bone. Note
the femur is flipped in comparison
with the images of the 5.56×45 mm,
as this is a right femur and the
previous was a left; however, entry is
always from the right of each image in
both sequences.
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may also be due to the initial impact area of the displaced gel
from the elliptical expanding cavity being larger with further
bullet tracts, thus loading the bone over a larger area, rather
than more localised loading. Similar results were seen with the
0.4400, but in addition, we found that the closer the bullet was
to the bone the greater the fracture comminution, which sug-
gests more severe bony injury from the higher rate of energy
deposition and energy flux, as suggested by previous authors.28

It would be worth further investigation with the bone ends
loaded to simulate the weight bearing limb, as it is likely that
fracture will occur with even more distant bullet tracts if the
bone is unable to move and is thus forced to flex.

CONCLUSIONS
This work suggests that indirect fractures are caused by the
radial displacement of soft tissue material by the expansion of
the temporary cavity and relate to the proximity of the expand-
ing cavity to the bone. Fractures occur from flexion of the bone
and classically display wedge-shaped fracture patterns with the
apex of the wedge pointing away from the expanding cavity.
The primary factor determining bone fracture is the energy
transferred into the tissues and therefore is much more likely
for projectiles that tumble or deform.
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